Quadratic Transformations

Learning Goals/Objectives: Students will explore and understand the effects of the parameters a, h, k on the quadratic function algebraically and graphically. Students will understand and articulate the domain and the range of quadratic functions.

Standard: F.BF.3

Materials:

Graphing Calculators Colored pencils Student Exploration Activity Sheets (attached)

Procedure: This activity is best done by students working in small teams of 2-3 people each.

Develop

- 1. Group work: Graphing exploration activity.
- 2. Class discussion:
 - a. Vocabulary:
 - i. parabola
 - ii. vertex
 - iii. translation
 - iv. reflections
 - v. stretch/compressions
 - vi. parent function
 - b. Points to develop:
 - i. Students' hypotheses
 - ii. Examples
 - iii. Domain and Range

Solidify

- 1. Group work: Practice sheets A and B; Use more examples or fewer depending on class need.
- 2. Class discussion:
 - a. Discuss graphs and equations; Particularly 2A
- 3. Group work: Application problems.
- 4. Class discussion: have groups present solutions.

Practice

1.

Graphing Quadratic Functions Exploration

- 1. Using a graphing calculator, graph the function $f(x) = x^2$; sketch the graph on the grid using 5 exact points.
 - a. What is the domain?
 - b. What is the range?
- 2. Graph (in a different color) $f(x) = x^2 + 2$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 3. Graph (in a different color) $f(x) = x^2 3$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 4. Describe the effect of *k* on the equation $f(x) = x^2 + k$

 Create and graph your own function and determine if your hypothesis (answer from #4) is correct.

- 6. Graph (in a different color) $f(x) = (x+2)^2$ on the provided graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 7. Graph (in a different color) $f(x) = (x-3)^2$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 8. Describe the effect of *h* on the equation $f(x) = (x h)^2$

- 10. Graph (in a different color) $f(x) = 2x^2$ on the provided graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?

11. Graph (in a different color) $f(x) = \frac{1}{2}x^2$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.

- a. What is the domain?
- b. What is the range?
- 12. Graph (in a different color) $f(x) = -x^2$ on the provided graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 13. Graph (in a different color) $f(x) = -3x^2$ on the same graph using 5 exact points. Describe the difference between this graph and the graph of $f(x) = x^2$.
 - a. What is the domain?
 - b. What is the range?
- 14. Describe the effect of *a* on the equation $f(x) = ax^2$

15. Create and graph your own function and determine if your hypothesis (answer from #14) is correct.

Practice A – Graphing Quadratic Functions

Write the equation of the parabolas graphed below. Use your calculator to check your answer. Verify at least 3 points.

	2.
Equation:	Equation:
Vertex:	Vertex:
Domain:	Domain:
Range:	Range:
3.	4.
Equation:	Equation:
Vertex:	Vertex:
Domain:	Domain:
Range:	Range:

Practice B – Graphing Quadratic Functions

In the following functions, the transformations have been combined on the quadratic function that you just discovered. Graph the following functions with at least 3 precise points.

1.
$$f(x) = (x+2)^2 - 3$$

2. $f(x) = -(x-1)^2 + 4$
3. $f(x) = 2(x-2)^2 - 1$

 $f(x) = 2(x-2)^2 - 1$
 $f(x) = -(x-1)^2 + 4$
 $f(x) = 2(x-2)^2 - 1$
 $f(x) = -(x-1)^2 + 4$
 $f(x) = 2(x-2)^2 - 1$
 $f(x) = 2(x-2)^2 - 1$

4.
$$f(x) = -\frac{1}{2}(x+2)^2$$

5. $f(x) = 3x^2 - 5$

6. $f(x) = -(x+3)^2 + 4$

Graphing Quadratic Functions – Applications

A. Draw a path for the bird that would hit the target (Pigs). Write an equation for the path.

B. Describe a reasonable domain and range for your function.

C. Compare the domain and range for this function to the domain and range of $f(x) = x^2$.

2. Although the playing surface of a football or soccer field appears to be flat, its surface is actually shaped like a parabola so that rain runs off to either side. The cross section of a field with synthetic turf can be modeled by $f(x) = -0.000234(x - 80)^2 + 1.5$ where x and y are measured in feet.

- A. Find the width of the field.
- B. What is the maximum height of the field?
- C. Explain how the width and height relate to domain and range.

3. The average gas mileage *m* in miles per gallon for a compact car is modeled by $m(s) = -0.015(s - 47)^2 + 33$, where *s* is the car's speed in miles per hour. The average gas mileage for an SUV is modeled by $m_y(s) = -0.015(s - 47)^2 + 15$. What kind of transformation describes this change and what does this transformation mean?