Trig Worksheet - Bearings

There are two ways to express a navigational heading or a "bearing".

1. When a single angle is given, it is understood that the bearing is measured in a clockwise direction from due north. The bearing from A to C is 30°.

A
2. The other system starts with a north or south line and uses an acute angle to show direction.

The bearing from A to C is $S 52^{\circ} \mathrm{E}$ (52° East of South)

Give a diagram that represents each bearing.

1. bearing of 32^{0}
2. bearing of 304^{0}
3. $\mathrm{N} 42^{0} \mathrm{E}$
4. $S 31^{0} \mathrm{E}$
5. $\mathrm{N} 52^{0} \mathrm{~W}$

Use these methods to draw a diagram to help you solve the following problems.

Problem 1: A ship travels 70 km on a bearing of 27°, and then travels on a bearing of 147^{0} for 180 km . Find the distance of the end of the trip from the starting point.

Problem 2: Two lighthouses are located on a north-south line. From lighthouse A the bearing of a ship 3742 m away is $129^{\circ} 43^{\prime}$. From lighthouse B the bearing of the ship is $39^{\circ} 43$. Find the distance between the lighthouses.

Problem 3: Radio direction finders are set up at points A and B, which are 2.00 mi. apart on an east-west line. From A it is found that the bearing of the signal from a radio transmitter is $\mathrm{N} 36^{\circ} 20^{\prime} \mathrm{E}$, while from B the bearing of the same signal is $\mathrm{N} 43^{\circ} 40^{\prime} \mathrm{W}$. Find the distance of the transmitter from B.

Problem 4: Radar stations A and B are on an east-west line, 3.7 miles apart. Station A detects a plane at C, on a bearing of 61°. Station B detects the plane at a bearing of 321°. Find the distance from A to C .

