# **Formula Reference Sheet**

| Shape                      | Formulas for Area (A) and Circumference (C)                                                                                                                                                                           |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Triangle                   | $A = \frac{1}{2}bh = \frac{1}{2} \times \text{base} \times \text{height}$                                                                                                                                             |
| Rectangle                  | $A = lw = \text{length} \times \text{width}$                                                                                                                                                                          |
| Trapezoid /                | $A = \frac{1}{2}(b_1 + b_2)h = \frac{1}{2} \times \text{sum of bases} \times \text{height}$                                                                                                                           |
| Parallelogram              | $A = bh = \text{base} \times \text{height}$                                                                                                                                                                           |
| Circle                     | $A = \pi r^2 = \pi \times \text{square of radius}$<br>$C = 2\pi r = 2 \times \pi \times \text{radius}$<br>$C = \pi d = \pi \times \text{diameter}$                                                                    |
| Figure                     | Formulas for Volume (V) and Surface Area (SA)                                                                                                                                                                         |
| Rectangular Prism          | $V = lwh = \text{length} \times \text{width} \times \text{height}$<br>SA = 2lw + 2hw + 2lh<br>$= 2(\text{length} \times \text{width}) + 2(\text{height} \times \text{width}) + 2(\text{length} \times \text{height})$ |
| General<br>Prisms          | $V = Bh = $ area of base $\times$ height $SA = $ sum of the areas of the faces                                                                                                                                        |
| Right Circular<br>Cylinder | V = Bh = area of base × height<br>$SA = 2B + Ch = (2 \times \text{area of base}) + (\text{circumference} \times \text{height})$                                                                                       |
| Square Pyramid             | $V = \frac{1}{3}Bh = \frac{1}{3} \times \text{area of base} \times \text{height}$ $SA = B + \frac{1}{2}P\ell$ = area of base + $(\frac{1}{2} \times \text{perimeter of base} \times \text{slant height})$             |
| Right Circular<br>Cone     | $V = \frac{1}{3}Bh = \frac{1}{3} \times \text{area of base} \times \text{height}$<br>$SA = B + \frac{1}{2}C\ell = \text{area of base} + (\frac{1}{2} \times \text{circumference} \times \text{slant height})$         |
| Sphere                     | $V = \frac{4}{3}\pi r^3 = \frac{4}{3} \times \pi \times \text{cube of radius}$<br>$SA = 4\pi r^2 = 4 \times \pi \times \text{square of radius}$                                                                       |

#### **Equations of a Line**

Standard Form:

$$Ax + By = C$$

where A and B are not both zero

Slope-Intercept Form:

$$y = mx + b$$
 or  $y = b + mx$ 

where m = slope and b = y-intercept

Point-Slope Form:

$$y-y_1=m(x-x_1)$$

where m = slope,  $(x_1, y_1) = \text{point on line}$ 

#### **Coordinate Geometry Formulas**

Let  $(x_1, y_1)$  and  $(x_2, y_2)$  be two points in the plane.

slope = 
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 where  $x_2 \neq x_1$ 

$$midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

distance = 
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

#### **Distance Traveled**

d = rt

 $distance = rate \times time$ 

# **Simple Interest**

$$I = prt$$

 $interest = principal \times interest rate \times time$ 

### **Polygon Angle Formulas**

Sum of degree measures of the interior angles of a polygon:

$$180(n-2)$$

Degree measure of an interior angle of a regular polygon:

$$\frac{180(n-2)}{n}$$

where n is the number of sides of the polygon

# Formulas for Right Triangles



Pythagorean Theorem:  $a^2 + b^2 = c^2$ 

$$a^2+b^2=c^2$$

$$\sin A = \frac{a}{c} = \left(\frac{\text{opposite}}{\text{hypotenuse}}\right)$$

$$\cos A = \frac{b}{c} = \left(\frac{\text{adjacent}}{\text{hypotenuse}}\right)$$

$$\tan A = \frac{a}{b} = \left(\frac{\text{opposite}}{\text{adjacent}}\right)$$

# **Special Triangles**

