

www.MathWorksheetsGo.com On Twitter: twitter.com/engagingmath On FaceBook: www.mathworksheetsgo.com/facebook

> I. Model Problems. II. Practice III. Challenge Problems IV. Answer Key

Web Resources

Inverse Functions www.mathwarehouse.com/algebra/relation/inverse-of-function.php

> *Functions and Relations* www.mathwarehouse.com/algebra/relation/

We Recommend Meta Calculator -- a free online graphing calculator

© <u>www.MathWorksheetsGo.com</u> All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at <u>http://www.mathworksheetsgo.com/downloads/terms-of-use.php</u>.

Inverse Functions

The function g(x) are inverses of each other f(x) if g(f(x)) = x and g(f(x)) = x.

The inverse of the function f(x) is indicated with the notation $f^{-1}(x)$, read f inverse (this notation does **not** mean $\frac{1}{f(x)}$).

I. Model Problems

In this example we will find the inverse of a discrete function for a given as a list of ordered pairs.

Example 1: If $f = \{(3,2), (4,-6), (-2,11), (5,5)\}$ find $f^{-1}(x)$. When finding the inverse exchange x and $f = \{(3,2), (4,-6), (-2,11), (5,5)\}$ y. The ordered pairs (x,y) become (y,x). $f^{-1} = \{(2,3), (-6,4), (11,-2), (5,5)\}$ Answer: $f^{-1} = \{(2,3), (-6,4), (11,-2), (5,5)\}$

In these examples we will find the inverse of functions given as an equation. Example 2: If f(x) = 3x + 10 find $f^{-1}(x)$. Write function in terms of y. y = 3x + 10y = 3x + 10

When finding the inverse exchange *x* and *y*. Solve for *y*.

3y + 10
-10
3y
x
v
·
x - 10
3

Rewrite as $f^{-1}(x)$.

Answer: $f^{-1}(x) = \frac{x-10}{3}$

Example 3: If $f(x) = \sqrt{x + 12}$ find $f^{-1}(x)$. Write function in terms of y.

When finding the inverse exchange *x* and *y*. Solve for *y*. Square both sides of the equation.

Rewrite as
$$f^{-1}(x)$$
.
Answer: $f^{-1}(x) = x^2 - 12$, $x \in \mathbb{R} | x \ge 0$

$$f(x) = \sqrt{x + 12} y = \sqrt{x + 12} x = \sqrt{y + 12} x^{2} = (\sqrt{y + 12})^{2} x^{2} = y + 12 -12 -12 x^{2} - 12 = y f^{-1}(x) = x^{2} - 12$$

II. Practice Problems

Solve.

- 1. Is $g(x) = \frac{1}{2}x 2$ the inverse of f(x) = 2x + 4? Justify your answer.
- 2. Is g(x) = 4x + 24 the inverse of $f(x) = \frac{1}{4}x + 6$? Justify your answer.
- 3. Is $h(x) = x^2 2$ the inverse of $g(x) = \sqrt{x+2}$? Justify your answer.
- 4. Is $h(x) = x^2$ the inverse of $g(x) = \sqrt{x}$? Justify your answer.

Find the inverse of the given function.

5. $f = \{(1,3), (2,-5), (3,6)\}$ 7. $h = \{(-1,-1), (0,0), (3,3), (6,6)\}$

6.
$$g = \{(-4,1), (-3,2), (0,0), (1,10)\}$$

8. $\frac{x \ y}{-3 \ -2}$
 $-1 \ 2$

$$\frac{\begin{array}{c|c} -1 & 2 \\ \hline 0 & 4 \\ \hline 1 & 6 \\ \hline 3 & 8 \\ 10. f(x) = 3x - 7 \end{array}$$

9.

$$\frac{x}{-3} \frac{y}{0}$$

$$\frac{1}{2} \frac{2}{6} \frac{3}{3}$$

$$\frac{13}{22} \frac{4}{5}$$

$$11. g(x) = -4x + 5$$

$$12. h(x) = \frac{2}{5}x + 6$$

$$13. f(x) = \frac{3x+4}{7}$$

$$14. g(x) = \frac{1}{4}x + 6$$

$$15. g(x) = -3x - 10$$

$$16. f(x) = \sqrt{x - 4}$$

$$17. g(x) = \sqrt{2x + 8}$$

$$18. h(x) = \sqrt{3x} - 6$$

$$19. f(x) = 4\sqrt{x}$$

20. Graph the inverse of f(x) = 4x - 12.

Challenge Problems

- 1. Graph the inverse of $f(x) = \sqrt{x+1}$ (Hint: identify the domain of f(x)).
- 2. Graph the inverse of the function graphed below.

scale of x and y-axes is 1.

- 3. Find the inverse of the function $f(x) = \sqrt[8]{x+4}$.
- 4. Find the error in the student's work for the following problem:

If
$$f(x) = \frac{x-7}{x}$$
, find $f^{-1}(x)$.
Given $f(x) = \frac{x-7}{x}$
Step 1 $y = \frac{x-7}{x}$
Step 2 $x = \frac{y-7}{x}$
Step 3 $x(x) = (\frac{y-7}{x})x$
Step 4 $x^2 = y-7$
 $+7 +7 +7$
Step 5 $x^2 + 7 = y$
Step 6 $f^{-1}(x) = x^2 + 7$

5. Find the inverse of the function $f(x) = \frac{x-2}{x}$.

IV. Answer Key

scale of x and y-axes is 1.

Challenge Problems

1.

scale of x and y-axes is 1.

2.

scale of x and y-axes is 1.

- 3. $g^{-1}(x) = x^3 4$ 4. Step 2; replace both x with y

5.
$$f^{-1}(x) = \frac{-2}{x-1}$$