Practice Masters Level B ## 5.5 Special Triangles and Areas of Regular Polygons In $\triangle ABC$, $\overline{AC} \perp \overline{BC}$, \overline{CD} is the altitude to AB. Use the figure to find the missing measures in Exercises 1–6. | | | | | | $D \longrightarrow B$ | |------------------|------------------|------------------|------------------|------------------|-----------------------| | \underline{AB} | \underline{BC} | \underline{CD} | \underline{AD} | \underline{DB} | \underline{AC} | | 1. 8 | | | | | <u>-</u> 5 | | 2 | 2 | | | | | | 3 | | 4 | | | | | 4 | | | 9 | | | | 5 | | | | 10 | | | 6 | | | | | 12 | For Exercises 7-9, refer to the regular hexagon, ABCDEF. - 7. If the area of *ABCDEF* is 841.8 square units, find the length of each side. - 8. If the area of *ABCDEF* is 841.8 square units, find the length of the apothem. - 9. If the apothem equals 4, what is the area? For Exercises 10 and 11, refer to trapezoid TQRS. - 10. Find the perimeter of TQRS. _____ - 11. Find the area of TQRS. In the figure at the right, $m \angle BAC = 45^{\circ}$ and $m \angle D = 30^{\circ}$. - 12. Find AC. _____ - 13. Find AD. _____ - 14. Find CD. _____