

Practice Masters Level B

5.5 Special Triangles and Areas of Regular Polygons

In $\triangle ABC$, $\overline{AC} \perp \overline{BC}$, \overline{CD} is the altitude to AB. Use the figure to find the missing measures in Exercises 1–6.

					$D \longrightarrow B$
\underline{AB}	\underline{BC}	\underline{CD}	\underline{AD}	\underline{DB}	\underline{AC}
1. 8					<u>-</u> 5
2	2				
3		4			
4			9		
5				10	
6					12

For Exercises 7-9, refer to the regular hexagon, ABCDEF.

- 7. If the area of *ABCDEF* is 841.8 square units, find the length of each side.
- 8. If the area of *ABCDEF* is 841.8 square units, find the length of the apothem.
- 9. If the apothem equals 4, what is the area?

For Exercises 10 and 11, refer to trapezoid TQRS.

- 10. Find the perimeter of TQRS. _____
- 11. Find the area of TQRS.

In the figure at the right, $m \angle BAC = 45^{\circ}$ and $m \angle D = 30^{\circ}$.

- 12. Find AC. _____
- 13. Find AD. _____
- 14. Find CD. _____

