Name:

Final Exam Practice

1. Solve the following equations:

a.
$$\frac{5}{2x-3} = \frac{3}{x+5}$$
 b. $x^4 + 7x^2 - 8 = 0$ c. $|3x-6| + 3 = 30$

b.
$$x^4 + 7x^2 - 8 = 0$$

c.
$$|3x-6|+3=30$$

d.
$$\log(x+2)-3=1$$

e.
$$6^{1-2x} + 2 = 12$$

d.
$$\log(x+2)-3=1$$
 e. $6^{1-2x}+2=12$ f. $\ln\left(\frac{3}{8}x+1\right)=10$

g.
$$|1 - 5x| + 4 = 1$$

h.
$$\sqrt{x-1} + 7 = x$$
 i. $\log_5 6^{2x-1} = 2$

i.
$$\log_5 6^{2x-1} = 2$$

j.
$$|x^2 - 5x| = 6$$

2. Solve and write your answer in interval notation:

a.
$$|4x - 9| + 1 \ge 12$$

b.
$$3x^2 - 7x - 20 \ge 0$$

a.
$$|4x-9|+1 \ge 12$$
 b. $3x^2-7x-20 \ge 0$ c. $5-|3x+1| > 2$ d. $\frac{x^2+5x}{x^2-9} \le 0$

d.
$$\frac{x^2 + 5x}{x^2 - 9} \le 0$$

3. Given
$$f(x) = \frac{5x^2 - 3x + 7}{2x^2 - 8}$$
; $g(x) = \frac{20x^3 - 5x^2}{5x^2 + 1}$; $h(x) = \frac{x - 4}{x^2 - 3x - 4}$ determine the:

c. vertical asymptote(s)

f. graph g(x) using a-e.

4. Given
$$f(x) = \frac{3x}{2x+5}$$
; $h(x) = x^2 - 3x - 28$; $g(x) = \sqrt{\frac{4}{3}x-1} - 9$; $p(x) = 6x-3$

a. State the domain of
$$f(x)$$

b. State the domain of
$$g(x)$$
 c. Determine $f(x+2)$

e. Determine
$$(f \circ g) \left(\frac{3}{4}\right)$$
 f. Determine $(g \circ p)(x)$

f. Determine
$$(g \circ p)(x)$$

g. Determine
$$f^{-1}(x)$$

h. Determine
$$g^{-1}(x)$$

j. Determine
$$(h+p)(x)$$

l. The domain of
$$\left(\frac{p}{h}\right)(x)$$

- 5. Show that f(x) = 2x + 7 and $g(x) = \frac{x 7}{2}$ are inverses of each other.
- 6. Given $f(x) = \begin{cases} 2x+1 & x < -4 \\ \frac{4}{3}x-5 & x \ge -4 \end{cases}$
 - a. Evaluate f(9) b. Evaluate f(-7) c. graph f(x).
- 7. For the polynomials given below, **list each real zero and its multiplicity**. Then draw a graph of the polynomial.

a.
$$f(x) = -9x(x-5)(3x+5)^2$$

b.
$$g(x) = 4(x+3)^2(x-2)(x-5)^2$$

- 8. Given polynomial $g(x) = x^4 + 4x^3 + 2x^2 x + 6$,
 - a. What is the maximum # of zeroes g(x) could have?
 - b. What is the maximum # of turning points g(x) could have?
 - c. list all of the potential rational zeroes of g(x)
 - d. Is (x-3) a factor of g(x)? Explain.
 - e. Write g(x) in its fully factored form.
 - f. Find all zeroes (real and complex) of g(x)
- 9. Find all of the zeroes (real and complex) of the polynomials below:

a.
$$f(x) = 3x^3 - x^2 + 27x - 9$$

b.
$$g(x) = (x+3)(x^2-4x-1)$$

10. Form a polynomial with real coefficients of degree 4 that has zeroes: x = 0, x = -1, x = -5i

- 11. Suppose the function $h(t) = -16t^2 + 50t + 15$ gives the height of an object in feet over time (in seconds).
 - a. When does the object reach its highest point?
 - b. When does the object hit the ground?
- 12. Suppose a company finds that the revenue, in dollars, from sales of a particular product is a function of the unit price **p**, in dollars, that it charges. The revenue **R** is given by:

$$R(p) = -\frac{1}{4} p^2 + 1500p$$

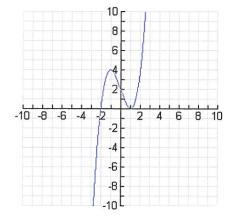
- a. What unit price should be set to maximize revenue? b. What is the maximum revenue?
- 13. Sketch the graph of the following using transformations:

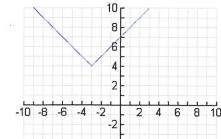
a.
$$f(x) = -(x+1)^2 - 2$$

b.
$$g(x) = log_2(x-1) + 3$$

c.
$$f(x) = 2\sqrt{x-3}$$

d.
$$h(x) = -2^x + 5$$





graph f(-x)+1

14. Write a function for each graph below that could describe it:

a.

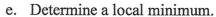
15. Identify the transformations involved to get from $f(x) = \sqrt{x}$ to

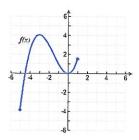
a.
$$g(x) = -\sqrt{x-4}$$

b.
$$h(x) = 3\sqrt{x} + 5$$

- 16. Find the zeros $P(x) = x^4 + 3x^3 + 12x 16$, (given that -2i is a zero).
- 17. The decay model $A(t) = 34e^{-.00244t}$ describes the amount of Strontium 90 left in a sample that is present after t years, if 34 grams are present to begin with.
 - a. How much Strontium 90 will be left after 100 years?
 - b. How long will it take until 20 grams remain?
- 18. The growth model $P(t) = 300e^{0.03t}$ describes the size P of an insect population after t days, if 300 insects are present to begin with.
 - a. What is the population after 8 days?
 - b. When will the insect population triple
- 19. Evaluate the following:
- a) log 100 b) ln 1
- c) $\log_3\left(\frac{1}{9}\right)$ d) $\log_4 2 + \log_4 4$
- 20. Use either $A = P(1 + \frac{r}{n})^{nt}$ or $A = Pe^{rt}$ to answer each of the following:
 - What amount results from a \$480 investment at 7% compounded quarterly after 2 years?
 - b) What amount results from a \$12,000 investment at 5.7% compounded continuously after 8
 - How much should be invested to get \$2000 after 6 years at 6% compounded semiannually? c)
 - How long does it take \$1700 to double if it is invested at 5% interest compounded d) continuously?
- 21. Find the equation of the line that is parallel to 3x+2y=4 that passes through the point (2,5).
- 22. Find the equation of the line that is perpendicular to $y=\frac{3}{5}x-4$ that passes though the point (-1,3).
- 23. For each of the following, calculate the difference quotient: $\frac{f(a+h)-f(a)}{h}$

a)
$$f(x) = -5x + 1$$


b)
$$f(x) = 3x^2 - 2x + 1$$


- 24. Use the binomial theorem to expand:
- a. (x+1)5
- b. $(2x+3)^4$

25. Use the graph of the function f(x) to answer the following:

- b. Range:
- c. On which interval(s) of x is f(x) decreasing?
- d. On which interval(s) of x is f(x) increasing?

26. Graph each quadratic function by correctly finding its vertex and its x-intercepts and y-intercept.

a)
$$y = x^2 - 8x + 7$$

b)
$$y = 3x^2 + 4x - 15$$

27. Find the 3rd term in the binomial expansion of
$$(2x - 3)^5$$

28. Determine whether the function is one-to-one. If so, state the inverse function.

$$a) f(x) = 3x + 8$$

b)
$$g(x) = (x-4)^2$$

c)
$$h(x) = x^3 + 2$$