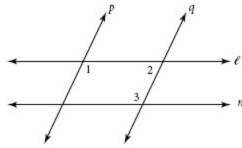


Practice

${m 3.4}$ Proving That Lines Are Parallel

For Exercises 1–5, refer to the diagram below, and fill in the name of the appropriate theorem or postulate.



5. If
$$m\angle 6 + m\angle 7 = 180^{\circ}$$
, then $\ell \mid m$ by the converse of the _____

For Exercises 6–12, use the diagram at right to complete the two-column proof below.

Given:
$$m \angle 1 = m \angle 3$$

Prove:
$$\ell \parallel m$$

	<i>} →</i>
Statements	Reasons
p q	6
∠1 and ∠2 are supplementary.	7
$m\angle 1 + m\angle 2 = 180^{\circ}$	8
$m \angle 1 = m \angle 3$	9
$m\angle 3 + m\angle 2 = 180^{\circ}$	10
∠3 and ∠2 are supplementary.	11
$\ell \parallel m$	12