

Practice

$8.6\,$ Area and Volume Ratios

1. In $\triangle ABC$, D and E are midpoints. What fraction of the area of $\triangle ABC$ is $\triangle ADE$?

The ratio of the corresponding sides of two similar triangles is $\frac{3}{5}$. Find the ratio of the following:

- 2. their altitudes
- 3. their perimeters

The side lengths of two squares are 4 cm and 9 cm. Find the ratio of the following:

- 5. their diagonals
- 6. their perimeters
- 7. their areas

Two spheres have radii of 6 cm and 8 cm. Find the ratio of the following:

- 8. the circumferences of their great circles
- 9. their surface areas
- 10. their volumes

The ratio of the base areas of two similar cones is $\frac{16}{25}$. Find the ratio of the following:

- 11. the circumference of their bases
- 12. their heights
- 13. their volumes

- 14. Two cubes have volumes of 3375 and 1331. What is the ratio of their heights?
- 15. Suppose that the triangles from Exercise 1 are bases of two prisms with the same height. What is the ratio of the volume of the prism with $\triangle ADE$ as a base to the volume of the prism with $\triangle ABC$ as a base?

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Geometry

Practice Workbook

55

Answers

- 3. No; no sides are given, so you would have to use the AA Similarity Postulate. Although $m\angle O = 58^{\circ}$ and $m\angle R = 58^{\circ}$, the AA Similarity Postulate does not apply here.
- 4. Yes; $\frac{TU}{WX} = \frac{UV}{XY} = 2$ and m $\angle U =$ m $\angle X = 90^{\circ}$, so $\triangle TUV \sim \triangle WXY$ by SAS Similarity Theorem.
- 5. $\triangle ABC \sim \triangle GHI$ by SSS Similarity Theorem because $\frac{AB}{GH} = \frac{BC}{DF} = \frac{AC}{GI} = 1.2$. $\triangle DEF$ is not similar to $\triangle ABC$ (and therefore is not similar to $\triangle GHI$) since $\frac{AB}{DE} = 3$ but $\frac{AC}{DF} = \frac{12}{5} \neq 3$.
- 6. $\triangle JKL \sim \triangle PQR$ by AA Similarity Postulate because $m \angle P = 25^{\circ}$. $\triangle MNO$ is not similar to $\triangle JKL$ (and therefore is not similar to $\triangle PQR$) since $\frac{JK}{MN} = \frac{3}{2}$ but $\frac{KL}{NO} = 1 \neq \frac{3}{2}$.

Lesson 8.4

1.
$$x = 6$$
 2. $x = 36$ 3. $x = 3$

4.
$$x = 4$$
 5. $x = 2$ 6. $x \approx 5.76$ or -0.26

- 7. $\triangle ABC \sim \triangle BDC \sim \triangle ADB$ by the AA Similarity Postulate
- 8. $\angle EDA \cong \angle DAC$, so $ED \parallel AC$.

Thus $\frac{BE}{BA} = \frac{BD}{BC}$ by the Side-Splitting Theorem, and so $\triangle BED \sim \triangle BAC$ by SAS.

Lesson 8.5

1.
$$h = 63 \text{ ft}$$
 2. $h = 24 \text{ ft}$ 3. $h = 26\frac{2}{3}$

4.
$$h = 32$$
 ft 5. $x = 4.8$ 6. $x = 12$

7.
$$x = 2.7$$
 8. $x = 3$

Lesson 8.6

1.
$$\frac{\text{Area of }\triangle ADE}{\text{Area of }\triangle ABC} = \frac{1}{4}$$
 2. $\frac{3}{5}$ 3. $\frac{3}{5}$ 4. $\frac{9}{25}$

5.
$$\frac{4}{9}$$
 6. $\frac{4}{9}$ 7. $\frac{16}{81}$ 8. $\frac{3}{4}$ 9. $\frac{9}{16}$ 10. $\frac{27}{64}$

11.
$$\frac{4}{5}$$
 12. $\frac{4}{5}$ 13. $\frac{64}{125}$ 14. $\frac{15}{11}$ 15. $\frac{1}{4}$

Practice — Chapter 9

Lesson 9.1

Lesson 9.2

1.
$$\overline{FH}$$
 2. \overline{KM} and \overline{KH} 3. 1.73; 1.73

$$4. \approx 11.62; \approx 11.62$$
 $5. \approx 12.49; \approx 12.49$

6.
$$\approx 60.79$$
; ≈ 60.79 7. ≈ 13.67 ; ≈ 27.35

$$8. \approx 18.33; \approx 36.66$$
 9. 5 10. 16

Lesson 9.3