\qquad
\qquad DATE \qquad

Practice
8.6 Area and Volume Ratios

1. In $\triangle A B C, D$ and E are midpoints. What fraction of the area of $\triangle A B C$ is $\triangle A D E$?

The ratio of the corresponding sides of two similar triangles is $\frac{3}{5}$. Find the ratio of the following:
2. their altitudes
3. their perimeters
4. their areas

The side lengths of two squares are 4 cm and 9 cm . Find the ratio of the following:
5. their diagonals
6. their perimeters
7. their areas

Two spheres have radii of 6 cm and 8 cm . Find the ratio of the following:
8. the circumferences of
their great circles
9. their surface areas
10. their volumes

The ratio of the base areas of two similar cones is $\frac{16}{25}$. Find the ratio of the following:
11. the circumference of their bases
12. their heights
13. their volumes
14. Two cubes have volumes of 3375 and 1331.

What is the ratio of their heights?
15. Suppose that the triangles from Exercise 1 are bases of two prisms with the same height. What is the ratio of the volume of the prism with $\triangle A D E$ as a base to the volume of the prism with $\triangle A B C$ as a base?
\qquad
\qquad
\qquad

Answvers
3. No; no sides are given, so you would have to use the AA Similarity Postulate. Although $\mathrm{m} \angle O=58^{\circ}$ and $\mathrm{m} \angle R=58^{\circ}$, the AA Similarity Postulate does not apply here.
4. Yes; $\frac{T U}{W X}=\frac{U V}{X Y}=2$ and $\mathrm{m} \angle U=$ $\mathrm{m} \angle X=90^{\circ}$, so $\triangle T U V \sim \triangle W X Y$ by SAS Similarity Theorem.
5. $\triangle A B C \sim \triangle G H I$ by SSS Similarity Theorem because $\frac{A B}{G H}=\frac{B C}{D F}=\frac{A C}{G I}=1.2$.
$\triangle D E F$ is not similar to $\triangle A B C$ (and therefore is not similar to $\triangle G H I)$ since $\frac{A B}{D E}=3$ but $\frac{A C}{D F}=\frac{12}{5} \neq 3$.
6. $\triangle J K L \sim \triangle P Q R$ by AA Similarity

Postulate because $\mathrm{m} \angle P=25^{\circ}$.
$\triangle M N O$ is not similar to $\triangle J K L$ (and therefore is not similar to $\triangle P Q R$) since $\frac{J K}{M N}=\frac{3}{2}$ but $\frac{K L}{N O}=1 \neq \frac{3}{2}$.

Lesson 8.4

1. $x=6$
2. $x=36$
3. $x=3$
4. $x=4$
5. $x=2$
6. $x \approx 5.76$ or -0.26
7. $\triangle A B C \sim \triangle B D C \sim \triangle A D B$ by the $A A$ Similarity Postulate
8. $\angle E D A \cong \angle D A C$, so $E D \| A C$.

Thus $\frac{B E}{B A}=\frac{B D}{B C}$ by the Side-Splitting Theorem, and so $\triangle B E D \sim \triangle B A C$ by SAS.

Lesson 8.5

1. $h=63 \mathrm{ft}$
2. $h=24 \mathrm{ft}$
3. $h=26 \frac{2}{3}$
4. $h=32 \mathrm{ft}$
5. $x=4.8$
6. $x=12$
7. $x=2.7$
8. $x=3$

Lesson 8.6

1. Area of $\triangle A D E=\frac{1}{4}$
2. $\frac{3}{5}$
3. $\frac{3}{5}$
4. $\frac{9}{25}$
5. $\frac{4}{9}$
6. $\frac{4}{9}$
7. $\frac{16}{81}$
8. $\frac{3}{4}$
9. $\frac{9}{16}$
10. $\frac{27}{64}$
11. $\frac{4}{5}$
12. $\frac{4}{5}$
13. $\frac{64}{125}$
14. $\frac{15}{11}$
15. $\frac{1}{4}$

Practice - Chapter 9

Lesson 9.1

1. 0.35
2. 8.17
3. 29.32
4. 11.52
5. 3.14
6. 0.87
7. 1.83
8. 2.62
9. 5.24
10. 3.18
11. 6.48
12. 38.64
13. 61.4°
14. 25.2°
15. 17.2°
16. 71.6°
17. 45.8°
18. 145.4°
19. 94.13°
20. 85.94°
21. 114.59°
22. 85.94°
23. 100.27°
24. 114.59°
25. 20°
26. 280°
27. 170°
28. 230°

Lesson 9.2

1. $\overline{F H}$
2. $\overline{K M}$ and $\overline{K H}$
3. $1.73 ; 1.73$
4. $\approx 11.62 ; \approx 11.62$
5. $\approx 12.49 ; \approx 12.49$
6. ≈ 60.79; ≈ 60.79
7. $\approx 13.67 ; \approx 27.35$
8. $\approx 18.33 ; \approx 36.66$
9. $5 \quad 10.16$

Lesson 9.3

1. 65°
2. 30°
3. 50°
4. 101°
5. 17.5°
6. 100°
7. 40°
8. 145°
9. 180°
10. 80°
11. 40°
12. 35°
