MATH 117

Here we shall consider various word problems that provide some physical applications of the right-triangle trig formulas.

Right-Triangle Formulas

 $x^{2} + y^{2} = z^{2} \qquad z = \sqrt{x^{2} + y^{2}} \qquad x = \sqrt{z^{2} - y^{2}} \qquad y = \sqrt{z^{2} - x^{2}}$ $\cos \theta = \frac{\text{Adj}}{\text{Hyp}} = \frac{x}{z} \qquad \sin \theta = \frac{\text{Opp}}{\text{Hyp}} = \frac{y}{z} \qquad \tan \theta = \frac{\text{Opp}}{\text{Adj}} = \frac{y}{x}$ $x = z \cos \theta \quad \text{and} \quad y = z \sin \theta$

Angles of Elevation and Depression

We often measure an angle from the ground upward (an angle of elevation), or downward *from* an imaginary horizontal line (an angle of depression). But by alternate interior angles, an angle of depression will be congruent to an angle of elevation.

Instructions: With each problem, draw a diagram and completely label all necessary pieces. Establish a right-triangle trigonometric relationship. Give the *exact* algebraic solution in terms of the given information, then give a numerical approximation.

Example 1. (i) A 15 ft ladder leans against a wall at an angle of elevation of 60°.

(a) How high up the wall does the ladder rest?

(b) How far from the wall is the base of the ladder?

(ii) A 50 ft pole has a support wire that runs from its top to the ground with an angle of depression of 75° .

(a) How far from the base of the pole does the wire connect to the ground?

(b) How much wire is used?

Example 2. A flat 12 foot plank rests with one end on the ground and the other end upon a 4 foot ledge.

- (a) How far from the base of the ledge is the far end of the plank?
- (b) What is the grade (i.e., angle of elevation)?

Solution.

Example 3. Jamie is 5' 8" tall. Find the length of her shadow if the angle of elevation of the sun is 30.2°.

Example 4. Some wire connects from a pole to point on the ground at an angle of depression of 80°. On the ground, the wire is 4.5 ft from the pole. (a) How much wire is used? (b) How high up the pole is the wire connected?

Solution.

Example 6. At a certain distance, the angle of elevation to the top of a building is 60°. From 40 feet further back, the angle of elevation is 45°. Find the height of the building.

Solution.

Then,
$$h = y \tan(60^\circ) = \frac{40 \tan(45^\circ) \times \tan(60^\circ)}{\tan(60^\circ) - \tan(45^\circ)} \approx 94.64$$
 ft.

Example 7. A building is 60 ft high. From a distance at point A on the ground, the angle of elevation to the top of the building is 40°. From a little nearer at point B, the angle of elevation is 70°. Find the distance from point A to point B.

