Honors Statistics Senior Final Exam Review

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Provide an appropriate respons	se.			
1) Find the area under th	ne standard normal curv	we to the left of $z = 1.5$.		1)
A) 0.0668	B) 0.7612	C) 0.9332	D) 0.5199	
2) Find the area under th	ne standard normal curv	we between $z = -1.25$ and	z = 1.25.	2)
A) 0.7888	B) 0.6412	C) 0.8817	D) 0.2112	
3) Find the area of the in	dicated region under th	e standard normal curve.		3)
-1.30	0			
A) 0.9177	B) 0.0968	C) 0.9032	D) 0.0823	
4) For the standard norm	nal curve, find the z-sco	re that corresponds to the	e first quartile.	4)
A) 0.67	B) -0.23	C) 0.77	D) -0.67	
5) Use a standard norma	al table to find the z-sco	re that corresponds to the	98th percentile.	5)
A) 0.25	B) 2.055	C) 2.33	D) 1.405	
		mean of 100 and a standa	=	6)
A) 129.4	B) 122.4	C) 115.6	D) 132.1	
σ = 30 (Source: U.S. N Find the probability the	lational Center for Healt hat a teenage boy has a c	ge boys is approximately th Statistics). Levels above cholesterol level greater tl		7)
A) 0.2138	B) 0.1587	C) 0.8413	D) 0.3419	
	15 days. A baby is prem	rmally distributed with a nature if it is born three w	mean of 268 days and a reeks early. What percent	8)
A) 9.21%	B) 10.31%	C) 6.81%	D) 8.08%	
each week on a certain	n route is approximately	stribution of the number of normal with $\mu = 15.5$ and the will lose between 10 at $C > 0.3944$	d σ = 3.6. What is the	9)

e an appropriate response				10)		
10) Assume that blood pressure readings are normally distributed with a mean of 116 and a standard deviation of 4.8. If 36 people are randomly selected, find the probability that their						
		mly selected, find the pro	bability that their			
mean blood pressure v		C) 0.0020	D) 0.0070			
A) 0.8819	B) 0.8615	C) 0.9938	D) 0.0062			
11) Assume that the heigh	ts of women are normally	distributed with a mean	of 63.6 inches and a	11)		
_	2.5 inches. If 100 women a			ŕ		
	ht greater than 63.0 inches		1			
A) 0.0082	B) 0.8989	C) 0.2881	D) 0.9918			
12) Find the critical value	z _c that corresponds to a 90	% confidence level.		12)		
	B) ±1.645	C) ±2.575	D) +2 22	12)		
A) ±1.96	D) ±1.043	C) ±2.5/5	D) ±2.33			
13) A random sample of 4	0 students has a mean ann	ual earnings of \$3120 and	l a standard deviation	13)		
	in of error if the confidence					
A) \$2891	B) \$210	C) \$77	D) \$7			
14) A nurse at a local hosp	oital is interested in estima	ting the birth weight of in	nfants. How large a	14)		
	t if she desires to be 98% co					
-	standard deviation of the					
A) 4	B) 22	C) 5	D) 21			
,	,	,	,			
	95% confident that the sam an 4%? A previous study i					
A) 291	B) 4	C) 529	D) 413			
11) 271	<i>D)</i> 1	C) 02)	<i>D</i>) 110			
16) A manufacturer of gol	f equipment wishes to esti	mate the number of left-l	nanded golfers. How	16)		
_	ed in order to be 98% confi		•			
	on by more than 5%? A pro					
left-handed golfers is	,	orious stately moneutes an	at the proportion of			
A) 174	B) 160	C) 41	D) 114			
,	,	,	,			
17) A survey of 280 homel	ess persons showed that 6	3 were veterans. Constru	ct a 90% confidence	17)		
•	tion of homeless persons v			•		
A) (0.161, 0.289)	B) (0.184, 0.266)	C) (0.167, 0.283)	D) (0.176, 0.274)			
18) Construct a 90% confid	dence interval for the popu	ılation mean, μ. Assume t	the population has a	18)		
	sample of 15 randomly se			•		
2.86 with a standard de	-	O	. 0			
A) (2.51, 3.21)	B) (2.37, 3.56)	C) (2.41, 3.42)	D) (2.28, 3.66)			
, (=:=-, =:==1)	, (=,)	-, 1- /	, (===, ===,)			
19) Find the value of F-the	e margin of error, for $c = 0$.	90 (90% confidence) n –	10 and $s = 3.7$	19)		
	· ·			17)		
A) 0.68	B) 2.12	C) 2.14	D) 1.62			

\$30.25. Determine who neither of these can be statistics textbook prices. A) Use the t-distriction of the control of the cont	ether a normal distribut e used to construct a cor ces is not normally distr bution. mal distribution or t-dis	ion or a t-distribution ofidence interval. Ass ibuted.	n should be used or whether	20)				
	-			21)				
A) 2.145	B) 1.753	C) 2.624	D) 1.761					
22) Find the critical value	, t _C for a 99% confidence	e interval; n = 10.		22)				
A) 2.262	B) 1.833	C) 3.169	D) 3.250					
	-		ne whether the hypothesis test	23)				
A) two-tailed	· ·		C) left-tailed					
24) The owner of a professional basketball team claims that the mean attendance at games is over								
	ht-tailed, or two-tailed		ner the hypothesis test for this C) left-tailed					
25) Suppose you are usin	g $\alpha = 0.05$ to test the class	im that $\mu > 13$ using a	a P-value. You are given the	25)				
\$30.25. Determine whether a normal distribution or a t-distribution should be used or whether neither of these can be used to construct a confidence interval. Assume the distribution of statistics textbook prices is not normally distributed. A) Use the t-distribution. B) Cannot use normal distribution or t-distribution. C) Use normal distribution. 21) Find the critical value, t_0 for a 90% confidence interval; $n = 15$. A) 2.145 B) 1.753 C) 2.624 D) 1.761 22) Find the critical value, t_0 for a 99% confidence interval; $n = 10$. A) 2.262 B) 1.833 C) 3.169 D) 3.250 23) A researcher claims that 73% of voters favor gun control. Determine whether the hypothesis test for this claim is left-tailed, right-tailed, or two-tailed. A) two-tailed B) right-tailed C) left-tailed C) left-tailed C) The owner of a professional basketball team claims that the mean attendance at games is over 25,000 and therefore the team needs a new arena. Determine whether the hypothesis test for this claim is left-tailed, right-tailed, or two-tailed. A) right-tailed B) two-tailed C) left-tailed C) left-tailed C) Suppose you are using $\alpha = 0.05$ to test the claim that $\mu > 13$ using a P-value. You are given the sample statistics $n = 50$, $n = 13.3$, and $n = 1.2$. Find the P-value. A) 0.1321 B) 0.0416 C) 0.0012 D) 0.0128 26) Suppose you are using $\alpha = 0.01$ to test the claim that $\mu = 1120$ using a P-value. You are given the sample statistics $n = 35$, $n = 1000$, and $n = 82$. Find the P-value. A) 0.0376 B) 0.0077 C) 0.3169 D) 0.0154 C) Given H ₀ : $\mu = 25$, H _a : $\mu \neq 25$, and P = 0.033. Do you reject or fail to reject H ₀ at the 0.01 level of significance? A) fail to reject H ₀ B) not sufficient information to decide C) reject H ₀								
26) Suppose you are usin	g $\alpha = 0.01$ to test the cla	im that $\mu = 1120$ usin	g a P-value. You are given the	26)				
•								
A) 0.0376	B) 0.0077	C) 0.3169	D) 0.0154					
	μ ≠ 25, and P = 0.033. I	Do you reject or fail to	o reject H ₀ at the 0.01 level of	27)				
A) fail to reject H ₀								
•	formation to decide							
28) Find the critical value	of z for a left-tailed test	with $\alpha = 0.05$ and n	= 48.	28)				
				, 				
29) Find the critical value	of z for a two-tailed tes	It with $\alpha = 0.06$ and r	1 = 36.	29)				
A) ±2.575	B) ±1.88	C) ±1.96	D) ±2.33					

- 30) Suppose you want to test the claim that $\mu > 25.6$ (sigma known). Given a sample size of n = 42 and a level of significance of $\alpha = 0.1$, when should you reject H₀?
 - A) Reject H₀ if the standardized test statistic is greater than 2.575.
 - B) Reject H₀ if the standardized test statistic is greater than 1.28.
 - C) Reject H₀ if the standardized test statistic is greater than 1.96.
 - D) Reject H₀ if the standardized test statistic is greater than 1.645.
- 31) You wish to test the claim that $\mu = 1200$ at a level of significance of $\alpha = 0.01$ and are given sample statistics n = 35, x = 1170 and s = 82. Compute the value of the standardized test statistic. Round your answer to two decimal places.
 - A) -4.67
- B) -3.82
- C) -5.18
- D) -2.16

31)

33)

- 32) Determine the standardized test statistic, z, to test the claim about the population proportion p > 32) ______0.015 given n = 50 and p = .029. Use $\alpha = 0.01$.
 - A) 2.18
- B) 1.42
- C) 0.81
- D) 3.01

D) 0.881

- 33) Calculate the correlation coefficient, r, for the data below.
 - x
 -10
 -8
 -1
 -4
 -6
 -7
 -5
 -3
 -2
 -9

 y
 -12
 -10
 7
 -1
 -4
 -8
 -3
 1
 4
 -10
- 34) The data below are the final exam scores of 10 randomly selected statistics students and the number of hours they studied for the exam. Find the equation of the regression line for the given data.

Hours, x	3	5	2	8	2	4	4	5	6	3
Scores, y	65	80	60	88	66	78	85	90	90	71

A)
$$\hat{y} = -56.113x - 5.044$$

C)
$$v = -5.044x + 56.113$$

B)
$$\hat{y} = 56.113x - 5.044$$

D)
$$\dot{y} = 5.044x + 56.113$$

35) The data below are the number of absences and the final grades of 9 randomly selected students $\frac{35}{2}$ from a statistics class. What is the best predicted value for y given x = 13? Assume that the variables x and y have a significant correlation.

Number of absences, x	0	3	6	4	9	2	15	8	5
Final grade, v	98	86	80	82	71	92	55	76	82

A) 59

B) 61

C) 62

D) 60

Answer Key Testname: STATS SENIOR FINAL REVIEW

- 1) C
- 2) A
- 3) C
- 4) D
- 5) B
- 6) A
- 7) B
- 8) D
- 9) A
- 10) C
- 11) D
- 12) B
- 13) B
- 14) B
- 15) D
- 16) B
- 17) B
- 18) A
- 19) C
- 20) B
- 21) D
- 22) D
- 23) A
- 24) A
- 25) B 26) A
- 27) A
- 28) B
- 29) B
- 30) B
- 31) D
- 32) C
- 33) A
- 34) D
- 35) D