Step-by-step StatCrunch Guide

This also demonstrates using examples how to go through the steps. Some examples include links to data in StatCrunch.

Content

- 1. Upload an Excel file from your computer in StatCrunch
- 2. Select saved data in StatCrunch
- 3. Find shared data on StatCrunch site
- 4. Take Random Samples
- 5. Create frequency and relative frequency tables
- 6. Create frequency and relative frequency bar graph
- 7. <u>Create pie Charts</u>
- 8. Create a boxplot
- 9. Create a side-by-side boxplot
- 10. Create a Contingency table
- 11. <u>Create histograms</u>
- 12. <u>Find descriptive statistics measures (mean, median, mode, standard deviation, quartiles, etc.)</u>
- 13. Find binomial probabilities
- 14. Find probabilities for Normal Distribution
- 15. Confidence Intervals for Means
- 16. Confidence Intervals for Proportions
- 17. Hypothesis Testing (1 proportion)
- 18. Hypothesis Testing (1 mean)
- 19. Hypothesis Testing (2 Proportions)
- 20. Hypothesis Testing (2 means)
- 21. Linear Correlation Coefficient (r) and the equation of the regression line
- 22. <u>Create a scatter plot</u>
- 23. <u>Chi Square</u>
- 24. <u>One Way ANOVA</u>

1. Upload an Excel file from your computer in StatCrunch

1. Open StatCrunch and login using your username and password (use the same login from MyStatLab). △ https://www.statcrunch.com

d Sites 🛆 Delburne Full Book	ca: 🔲 Aurasma Examples - 🤌 🎦		Legal Adv	nce - Aug	me												
MyStatCrunch + Open St	atCrunch Resources Support																
Load	StatCrunchThis Load data tables from Web pages directly into StatCrunch using the StatCrunchThic hoodmarkler	From Wikipe (Redracte	dia, the free encys d from List: Most Al	lopedia tine victories in vision I colleg	Men's College B e basketball te	lasketball) oamis ranè	ked by the	NCAA Div	Sign in StatCrunch / MyStatLab ID I Password								
									StatCrunchThis bookmarklet.		1	Kentucky	1903	110	2111	661	.762
		2	Kansaa	1899	115	2101	812	.721	Sign in								
Che	eck it out!	Row	Rank	College	First Sea	son Se		Wins L	> Forgot your sign-in info?								
		2	2	Kentuck Kansa North Caro Duk	s 18	199 11 <	110 115 1 ¹ 2	2111 2101 > Pause 2001	> Subscribe/Get access > Redeem an access code								

- 2. Click on the tab "MyStatCrunch"
- 3. Click on the link "Select a file on my computer"

StatCrunch

Home • Explore • MyStatCrunch • Open StatCrunch Resources Support

My Account [Edit]	My StatCrunch for cvoisei
StatCrunch ID: cvoisei	My Data Click a data set link to analyze the data or edit its properties. Want to load a new data set? • Select a file on my computer
Email: cvoisei@ccbcmd.edu	 Enter the WWW address of a file Paste data into a form Select a data file from Dropbox
Name: Cristina Voisei	 Select a data file from Google Drive Type or paste data into a blank data table
Occupation: instructor	My Results Click a result link to view it or edit its properties. To export a result from StatCrunch, use the
Organization: CC BALTIMORE CTY - CATONSVILLE	My Reports
Expires: Feb 7, 2024	Click a report link to view it or edit the its properties. A report allows you to group together c create a new report.
Renew now	My Surveys

4. Click "Choose File" StatCrunch

Home 🔻 Explore 🔻 MyStatCrun	ch 🔻 Open StatCrunch Resources Support
Need help?	Load data from my computer
StatCrunch can load text or Excel files (ending with .xls or .xlsx extensions) from your local computer or from a WWW address.	File: Choose File No file chosen
The uploaded file will be linked under your My Data listing for easy access in the future.	Select a file above or drag/drop one here! [.xlsxxlsodscsvtsvtxt]
If the first line in your file contains column headings (variable names), then check the use first line as column names option.	Name:
Delimiters are required to separate individual values in text files. The delimiter options are whitespace (any combination of spaces and tabs), tab, comma and semicolon. As an example, the first line in a comma delimited csv file, might look like:	Use first line as column names: Delimiter: whitespace (required for text files only) Share with everyone: No Yes
Student, "City, State", Score	Source: (optional)
Note double quotes can be used to encapsulate values that contain the delimiter.	Tags: (optional)
If you choose to share your data,	If you share your data, these terms will make it easier to find via search.

- 5. Select button "Share with everyone" if you want to share the file with others if not select "No"
- 6. Scroll to the bottom of the page and click on "Load File"

2. Select saved data in StatCrunch

1. Open StatCrunch and login using your username and password (use the same login from MyStatLab).

h								
MyStatCrunch - Open StatCrunch Resources Support								
StatCrunchThis	List of teams with the most victories in NCAA Div for Words, to the encyclope interest to Lat the fore econe field plantate The is a to the Word Service (only backet) The is a to the Word Service) control backet()						Sign In StatCrunch / MyStatLab ID [
Load data tables from Web pages directly into StatCrunch using the	Renk a	College					Wiresing percent	Password
StatCrunchThis bookmarklet.	1	Kantucky	1903	110	2111	061 812	.762	Sign in
Check it out!	Row 1 2 3	runch Edit Rank 1 3	College Kentuck Kansi North Can Duit	First Sea y 11 s 18 sli 15	son Se 103 199 111 ¢	110 115	Wins L 2111 2101 > 7005e	Forgot your sign-in info? Subscribe/Get access Redeem an access code

2. Click on the tab "MyStatCrunch" > My Data

3. Click on My Data: You would see your StatCrunch saved data files.

ome * Explore * MyStatCr	Inch * Open StatCrunch Resources Support			
/iew options	My Data for cvoisei Showing 1 to 15 of 91 data sets			
owse all	Data Set/Description	Share	Last edited	Size
earch	Depression levels	yes	Jun 27, 2018	80B
	Car size	yes	Jun 27, 2018	69B
oad a data set from:	ar batteries	no	Apr 25, 2018	135B
v computer	CCBC PHC_Student Analysis	yès	Apr 11, 2018	18KB

3. Find shared data on StatCrunch site

Click on the tab Explore > Data

4. Take Random Samples

×

9

10

11

Speeding

Speeding

Male

Female

- 1. Choose: Data \rightarrow Sample
- 2. Select the columns you want to sample
- 3. Type the desired sample size
- 4. Sampling options: Check 'Sample all columns at one time'
- 5. Store samples: Split across columns
- 6. Check Option "Open in a new data table" if you want the samples to open in a new page
- 7. Press: Compute!

Example: Traffic tickets

To access the data in StatCrunch click <u>here</u>. Must log in to be able to analyze data.

This box will appear when you complete step 1.

Sample Columns

Select columns:					
ID Reas					
Reason Gen	der				
ender 🛛					
Age of R					
air					
Vhere:					
-optional	Build				
Sample size:					
10					
-					
lumber of samples:					
Sampling options:					
Sampling options:					
Sample all columns at one time					
Save row ids for samples					
i tore samples: ® Split across columns © Stacked with a sample id					
Stacked with a sample id O Compute statistic for each sample					
optional	Build				
e.g. mean("Sample(col_name)")	build				
Column name(s):					
Prefix:optional					
Seeding:					
Ise dynamic seed					
🛛 Use fixed seed			StatCr	unch Applet	ts Edit
Seed: 12641					
			Row	Sample(Rea: Si	ample(Gen
ptions:			1	Speeding	Male
ð Open in a new data table			2	Speeding	Female
)	3	Failure to Fo	Male
			4	Missing Doc	Male
		1 1	5	Speeding	Female
	? Cancel Compute!		6	DUI	Female
			7	Failure to Fo	Male
			8	Speeding	Male
			_		

Follow steps 2 through 7 and the samples will be selected.

5. Create frequency and relative frequency tables

- 1. Select Stat > Tables > Frequency.
- 2. Select the column(s) you want to summarize.
- 3. Highlight the Statistic(s)
- 4. Click Compute!
- 5. You can then choose Options > Copy to copy the output for use elsewhere.

Example: Pet preferences

To access the data in StatCrunch click <u>here</u>. Must log in to be able to analyze data. This box will appear when you complete step 1.

Select column(s):			
Favorite pets	Favorite p	ets	
Where:			
optional			Build
optional ▼ Statistic(s):			
Frequency Relative frequency Percent of total			
Cumulative frequency Cumulative relative frequency			
Order by:			

Follow steps 2 through 4 to get a new window with these numbers calculated.

<pre>Frequency table Count = 24</pre>	results for F	avorite pets:
Favorite pets 🛊	Frequency \$	Relative Frequency \$
Cats	6	0.25
Dogs	9	0.375
Guinea pigs	5	0.20833333
Rabbits	4	0.16666667

6. Create frequency and relative frequency bar graphs

- 1. Select Graph > Bar Plot, then choose with data or with summary.
- 2. If you chose *with data*, select the column(s) you wish to use. If you chose *with summary*, set the columns containing the categories and counts.
- 3. Choose the type (*Frequency* or *Relative Frequency*).
- 4. Click Compute!

Example: Pet preferences

To access the data in StatCrunch click <u>here</u>. Must log in to be able to analyze data. This box will appear when you complete step 1 and 2.

Select Column(s):		
Favorite pets	Favorite pets	
Where:		
optional		Build
Group by:		
optional]	
Grouping options:		
Split bars	*	
Туре:		
Frequency	*	
IN A DECK DECEMBER OF THE OPEN		
Order by:		

Complete the remaining steps and the graph will appear in a new window.

7. Create pie charts

- 1. Select Graph > Pie Chart, then choose with data or with summary.
- 2. If you chose *with data*, select the column(s) you wish to use. If you chose *with summary*, set the columns containing the categories and counts.
- 3. Enter any modifications (labels, title, color scheme, etc)
- 4. Click Compute!

Example: Pet preferences

To access the data in StatCrunch click here. This box will appear when you complete step 1 and 2.

vorite pets
Build

Select the Display a "Percent of Total" and click Compute and the graph will appear in a new window.

8. Create a boxplot

- 1. Select Graph > Boxplot
- 2. Select the column variable you'll be using.
- 3. Choose on "Other options" > use fences to identify outliers
- 4. Click Compute!

9. Create a side-by-side boxplot

- 1. Select Graph > Boxplot
- 2. Select the column variable you'll be using (in here we have Number of Tickets).
- 3. Under "Group by" select the variable you want to have the data grouped by (in our case is Gender).
- 4. Choose on "Other options" > use fences to identify outliers
- 5. Click Compute!

Example: Number of Traffic Tickets by Gender

To access the data in StatCrunch click <u>here</u>. This box will appear when you complete step 1. Complete the remaining steps and the graph will appear in a new window.

xplot	1	ю				
Select Column(s): ID Female Age of R Had Ticket Tickets						
Where: optional	Build					
Group by: Gender Gender Grouping options: Plot groups for each column	Durity					
Other options: Use fences to identify outliers Draw boxes horizontally						
Markers: Mean Median Add Custom		Ticl 40	kets			•
Dividers: None Percent Count		30				
Graph properties:		20	+			
Color scheme: Basic - 7 colors *						
X-axis label:optional						
Y-axis label:optional		10	ł			
Title:optional						
Horizontal lines: 🗆						
?	Cancel Compute!	0	ł	Female	Gender	Male

10. Create a contingency table

- 1. Select Stats > Tables > Contingency > With Data
- 2. Select the row variable you'll be using.
- 3. Select the column variable you'll be using.
- 4. Choose how you want the answer displayed: frequency or percent.
- 5. Click Compute!

Example: Favorite holidays by gender

To access the data in StatCrunch click <u>here</u>. This box will appear when you complete step 1.

Cor	ntingency table (with data)					×
	Row variable: Favorite Holiday ▼					
	Column variable:					≡
	Gender 💌					
	Where:					
	optional				Build	
	Group by:					
	optional					
	Display:					
	Row percent	^				
	Column percent	=				
	Percent of total					-
			?	Cancel	Comput	e!

Complete the remaining steps and a new window will show the contingency table results.

11. Create histograms

- 1. Select Graph > Histogram
- 2. Select the column(s) you want to summarize
- 3. Set the *Type*. Set the Bins (*Start at:*) and (*width*)
- 4. Click Compute!

Example: Ideal Summer Temperatures

To access the data in StatCrunch click <u>here</u>. Must sign in StatCrunch to be able to analyze data. This box will appear when you complete step 1.

Select column(s): Ideal Temperatures			
Where:			
optional	В	uild	
Group by: optional			
Type: Frequency			
Bins:			
Start at: 67			
Width: 3			
Display options:			
Overlay distrib.:optional 🗸			
Value above bar: 🗆			
Markers:			
🗆 🔜 🔹 Mean			
🗆 📕 🔹 Median			
Add Custom			
Dividers:			
None			
O Percent			
O Count			
Graph properties:			
	?	Cancel	Compute

Complete the remaining steps and the graph will appear in a new window.

12. Find descriptive statistics measures (mean, median, mode, standard deviation, quartiles, etc.)

- 1. Select Stat > Summary Stat > Columns.
- 2. Select the variable you want to summarize.
- 3. Select any statistics that you want calculated.
- 4. Click "Compute!"

Example: Restaurant waiting times

To access the data in StatCrunch click <u>here</u>. Must sign in StatCrunch to be able to analyze data.

This box will appear when you complete step 1.

Select column(s):					^
Restaurant B			Restaura	ant B	
					-
Where:					
optional					
Group by:	_				
optional	\sim				
Statistics:					
Mean			Mean		-
Variance		~	Std. dev	,	
Std. dev.			Median	•	
Std. err.			01		
Median		~	Q3		
-					-
Percentiles (comma-se		ed):		
optional Enter 30 for	30th				
				())	
Other statistic (use x f	or dat	a,	e.g. mea	an(x)):	
optional					
Output:					~
<				>	
		_			
	?		Cancel	Compute!	

Complete the remaining steps and a new window with the desired descriptive statistics will pop up.

13. Find binomial probabilities

- 1. Select Stat > Calculators > Binomial
- 2. Type in the values for n, p, and x
- 3. Set the box after X to "equals." if you need a probability for one value.
- Set the box after X to "greater than and equal to" if you need to find a probability for "at least"
- 4. Click compute

Example: A brand name has a 20% recognition rate. Assume the owner of the brand wants to verify that rate by beginning with a small sample of 4 randomly selected consumers.

a) Find the probability that exactly 3 of the selected consumers recognize the brand name.

b) Find the probability that at least 3 of the selected consumers recognize the brand name.

Solution: a) This box will appear when you complete step 1.

After typing in the values for n, p, and x from our example and press compute we get the answer for part (a) 0.0256.

b) Repeat the steps but make sure to set the box after X to "greater than and equal to" to find the probability for "at least 3"

14. Find probabilities for Normal Distribution

- 1. Select Stat > Calculators > Normal
- 2. Type in the values for mean and std. dev.
- 3. Set the box after X to " \geq " or " \leq "
- 4. Click compute!

Example: The lengths of pregnancies are normally distributed with a mean of 268 days and a standard deviation of 15 days. One classic use of the normal distribution is inspired by a letter to "Dear Abby" in which a wife claimed to have given birth 308 days after a brief visit from her husband, who was serving in the Navy. Given this information, find the percentage of pregnancies lasting 308 days or longer.

This box will appear when you complete step 1. Type in the values from our example (mean 268, std. dev. 15), select the symbol \geq (because the problem says 308 or longer) and press compute to get the answer (see below).

15. Find Confidence Intervals for Means

- 1. Stat > T Stats > One Sample > With Summary
- 2. Type in the values for sample mean, sample stand. dev., and sample size
- 3. Click on confidence interval
- 4. Enter the confidence level
- 5. Click Compute!

Example: A random sample of 755 US cell phone users age 18 and older in May 2000 found that the average number of text messages sent or received per day is 41.5 messages with a standard deviation of 6.1. Construct a 95% confidence interval for the population mean number of text messages.

Complete step 1 and the "One sample T Summary" box will pop up.

One Sample T Summary	3
Sample mean:41.5Sample std. dev.:6.1Sample size:755	
Perform: O Hypothesis test for μ $H_0: \mu = 0$ $H_A: \mu \neq \bigtriangledown 0$ (Confidence interval for μ Level: 0.95	
	? Cancel Compute!

Type in the values for sample mean, sample stand. dev., and sample size from our example, select the confidence level and press compute to get the lower and upper limit for the confidence interval.

95% confidence interval results: μ : Mean of population							
Mean	Sample Mean	Std. Err.	DF	L. Limit	U. Limit		
μ	41.5	0.22200173	754	41.064185	41.935815		

16. Find Confidence Intervals for Proportions

- 1. Stat > Proportion Stats > One Sample > With Summary
- 2. Type in the values for number of successes, number of observations (this is the sample size)
- 3. Check on confidence interval
- 4. Enter the confidence level
- 5. Click Compute!

Example: An online site presented this question "Would the recent norovirus outbreak deter you from taking a cruise"? Among the 33118 people who responded, 71% said "yes." Construct a 99% confidence interval estimate for the proportion of the population of all people who would respond "yes" to that question.

Complete step 1 and the "One sample Prop. Summary" box will pop up.Type in the values for values for number of successes (the number of people who said yes), number of observations (this is the sample size) from our example, select the confidence level.

observations = 33118

successes = 0.71*33118 = 23514

of successes: 23514 # of observations:
of observations:
22110
33118
Perform:
○ Hypothesis test for p
$H_0: p = 0.5$
H _A : p ≠ ✓ 0.5
Confidence interval for p
Level: 0.99
Method: Standard-Wald 🗸
Output:
Store in data table
< >
? Cancel Compute!

Press compute to get the lower and upper limit for the confidence interval.

99% confidence interval results: p : Proportion of successes Method: Standard-Wald							
	Proportion	Count	Total	Sample Prop.	Std. Err.	L. Limit	U. Limit
	р	23514	33118	0.71000664	0.002493407	0.70358405	0.71642923

17. Hypothesis Testing (1 proportion)

- 1. Stat > Proportion Stats > One Sample > With Summary
- 2. Type in the values for number of successes, number of observations (this is the sample size)
- 3. Check on Perform hypothesis test for p
- 4. Enter the value for the null hypothesis and select the correct symbol in the alternative hypothesis
- 5. Enter the confidence level if different than 95%
- 6. Click Compute!

Example: According to the General Household Survey of 2005, 24% of individuals aged over 16 years smoked cigarettes in the United Kingdom. Among a random sample taken in 2008 of 100 individuals aged 16 and over, 21 smoked cigarettes. If appropriate, test using the p-value method at level of significance $\alpha = 0.10$ whether the population proportion of smokers in the United Kingdom has decreased since 2005.

Complete step 1 and the "One sample Prop. Summary" box will pop up.

- Type in the values for values for number of successes (the number of people who smoke), number of observations (this is the sample size) from our example
- Enter the value for the null hypothesis 0.24 and select the symbol "<" in the alternative hypothesis, enter the confidence level 0.90 because alpha is 0.10.
- Make sure the "Perform Hypothesis test for p is checked" and click "Compute".

Hypothesis test results: p : Proportion of successes $H_0 : p = 0.24$ $H_A : p < 0.24$							
Proportion	Count	Total	Sample Prop.	Std. Err.	Z-Stat	P-value	
р	21	100	0.21	0.042708313	-0.70243936	0.2412	

Use the obtained p-value to make a decision about the test. p-value = 0.2412 is > alpha = 0.10 so we retain the null.

18. Hypothesis Testing (1 mean)

- 1. Stat > T Stats > One Sample > With Summary
- 2. Type in the values for sample mean, sample std. dev., sample size
- 3. Check on Perform hypothesis test for mean
- 4. Enter the value for the null hypothesis and select the correct symbol in the alternative hypothesis
- 5. Enter the confidence level if different than 95%
- 6. Click Compute!

Example: A nutritionist claims that the mean daily consumption of fiber for 20-39 –year-old males is less than 20 grams per day. In a survey of 457 males who were 20-39 years old, conducted by the U. S. Department of Agriculture, it was found that the mean daily intake of fiber was 19.1 grams, with standard deviation 9.1 grams. Test whether the mean daily consumption of fiber for 20-39 –year-old males is less than 20 grams per day using a significance level of 0.01

One Sa	ample T Summ	ary			
Sa	ample mean: ample std. de ample size:	19.1 9.1 457			^
۲	Prform: Hypothesis tes $H_0: \mu = 20$ $H_A: \mu < 20$ Confidence inter Level: 0.99)			
	Itput: Store in data t	able		>	~
	?	Cancel	Co	ompute!	
µ:Меа Н₀:µ: Н₄:µ•			DF	T-Stat	P-val
меан		0 42568005			

Complete step 1 and the One Sample T Summary box will pop up.

- Enter the values for sample mean 19.1, sample std. dev. 9.1, and sample size 457 from our example.
- Enter the value for the null hypothesis 20 and select the symbol "<" in the alternative hypothesis, enter the confidence level 0.99 because alpha is 0.01.
- Make sure the "Perform Hypothesis test for mean is checked" and click "Compute".

Use the obtained p-value to make a decision about the test. p-value = 0.0175 is > alpha = 0.01 so we retain the null.

19. Hypothesis Testing (2 Proportions)

- 1. Stat > Proportion Stats > Two Samples > With Summary
- 2. Type in the values for sample 1 (the group that is on the left side of the hypothesis testing) the number of successes and the number of observations. Enter for sample 2 (the group that is on the right side of the hypothesis testing) the number of observations and the number of successes
- 3. Check on Perform hypothesis test
- 4. Select the correct symbol in the alternative hypothesis
- 5. Enter the confidence level if different than 95%
- 6. Click Compute!

Example: A study investigated survival rates for in-hospital patients who suffered cardiac arrest. Among 58,593 patients who had cardiac arrest during the day, 11,604 survived and were discharged. Among 28,155 patients who suffered cardiac arrest at night, 4139 survived and were discharged. Using the level of significance 0.01 test the claim that the survival rates are the same for day and night.

 $\begin{array}{l} H_0: \, p_d = p_n \\ H_1: \, p_d \neq p_n \end{array}$

Complete step 1 and the Two Sample Prop. Summary box will pop up.

wo Sample Prop. Summary	
Sample 1:	^
# of successes: 11604	
# of observations: 58593	
Sample 2:	
# of successes: 4139	
# of observations: 28155	
Perform:	
• Hypothesis test for p1 - p2	
$H_0: p_1 - p_2 = 0$	
$H_A: p_1 - p_2 \neq \checkmark 0$	
○ Confidence interval for p1 - p2	
Level: 0.99	~
<	>
? Cancel Compu	ıte!
othesis test results: proportion of successes for population 1 proportion of successes for population 2 p2 : Difference in proportions p1 - p2 = 0	
p ₁ - p ₂ ≠ 0	r 7-St

 H_A: p₁ - p₂ ≠ 0

 Difference
 Count1
 Total1
 Count2
 Total2
 Sample Diff.
 Std. Err.
 Z-Stat
 P-value

 p₁ - p₂
 11604
 58593
 4139
 28155
 0.051036499
 0.0027948458
 18.260936
 <0.0001</td>

Enter the values for sample 1 (the day group) # Successes =11604 # Observations = 58593

Enter the values for sample 2 (the night group) # Successes =4139 # Observations = 28155

Select the symbol "≠" in the alternative hypothesis, enter the confidence level 0.99 Make sure the "Perform Hypothesis test" is checked and click "Compute".

Use the obtained p-value to make a decision about the test. p-value is < 0.0001 which is < alpha = 0.01 so we reject the null.

20. Hypothesis Testing (2 means)

- 1. Stat > T Stats > Two Sample > With Summary
- 2. Type in for each sample the sample mean, sample std. dev., sample size
- 3. Uncheck the tab "Pool variances"
- 4. Check on Perform hypothesis test for mean. Select the correct symbol in the alternative hypothesis
- 5. Enter the confidence level if different than 95%
- 6. Click Compute!

Example: A study was done on body temperatures of men and women. The results are shown in the table below. Assume that the two samples are independent simple random samples selected from normally distributed populations. Use a 0.01 significance level, and test the claim that men have a higher mean body temperature than women.

	Men	Women	
μ	μ1	μ ₂	The hypothesis are:
n	11	59	H ₀ : μ ₁ = μ ₂
x	98.01°F	97.19°F	
s	0.77°F	0.72°F	$H_1: \mu_1 > \mu_2$

 $H_0: \mu_1 = \mu_2$ H₁: μ₁ > μ₂

Complete step 1 and the Two Sample T Summary box will pop up.

Two Sample T Summary	ж
Sample 1:	
Sample mean: 98.01	· · ·
Sample std. dev.: 0.77	
Sample size: 11	
Sample 2:	
Sample mean: 97.19	
Sample std. dev.: 0.72	
Sample size: 59	
Calculation options:	
Perform:	
O Hypothesis test for µ₁ - µ₂	
$H_0: \mu_1 - \mu_2 = 0$	
H _A : µ ₁ - µ ₂ > ∨ 0	
\bigcirc Confidence interval for $\mu_1 - \mu_2$	
	>
? Cancel	Compute!

Enter the values for sample 1 (the men group) Enter the values for sample 2 (the women group)

Select the symbol ">" in the alternative hypothesis, enter the confidence level 0.99 Make sure the "Perform Hypothesis test" is checked and click "Compute".

$\begin{array}{l} \mu_1 : \text{Mean of Population 1} \\ \mu_2 : \text{Mean of Population 2} \\ \mu_1 - \mu_2 : \text{Difference between two means} \\ H_0 : \mu_1 - \mu_2 = 0 \\ H_A : \mu_1 - \mu_2 > 0 \end{array}$									
(without pooled variances)									
Difference	Sample Diff.	Std. Err.	DF	T-Stat	P-value				
μ1 - μ2	0.82	0.2503726	13.464321	3.2751187	0.0029				

Hypothesis test results:

Since the p-value =0.0029 is < alpha = 0.01, we reject the null hypothesis.

21. The linear correlation coefficient (r) and the equation of the regression line

- 1. Stat > Regression > Simple Linear
- 2. Select the predictor variable for X and the response variable for Y
- 3. Click Compute!

Example: Car prices (in hundreds of dollars) and car age (in years)

To access the data in StatCrunch click <u>here</u>. Must sign in StatCrunch to be able to analyze data. This box will appear when you complete step 1.

ple Linear Regression		
X variable:		
Car age		
Y variable:		
Car price •		
Where:		
optional		Build
Group by:		
optional		
Perform:		
Hypothesis tests		
H_0 : Intercept = 0		
H _A : Intercept ≠ ▼ 0		
	? Cancel	Compute!
	: Cancer	compute:

The answers appears in a new window like the one below. R = -0.86 Regression equation Car Price = 172.07 - 11.63 Car Age

Options ((1 of 2)				2 8
Simple linea Dependent V Independent car price = 1 Sample size: R (correlation R-sq = 0.740 Estimate of e	ariable: car p Variable: car 72.06965 - 1 10 coefficient) 953055 error standard	orice age 1.631841 ca = -0.860540	085		^
Parameter	Estimate	Std. Err.	Alternative	DF	T-Stat
Intercept	172.06965	11.950432	≠ 0	8	14.398613
Slope	-11.631841	2.4343055	≠ 0	8	-4.7782995
<					>
					< >

If we click on the arrow we see the scatter plot with the regression line.

22. Create a scatter plot

- 1. Select Graph > Scatter plot
- 2. Select the x –variable (row variable) you'll be using.
- 3. Select the y variable (column variable) you'll be using.
- 4. Click Compute!

Example: To access the data in StatCrunch click <u>here</u>. Must sign in StatCrunch to be able to analyze data. This box will appear when you complete step 1.

Scatter Plot	3
X variable:	
car age 🗸 🗸	
Y variable:	
car price 🗸	
Where:	
optional	
Group by:	
optional	
Grouping options:Color points by group labelV	
Overlay polynomial order:	
optional	
Overlay function of vi	
<	>
? Cancel	Compute!

23. Chi Square

- 1. Enter the contingency table in StatCrunch: Have your columns labeled and then enter the corresponding cell value.
- 2. Select Stat> Tables >Contingency > With Summary
- 3. Select your table Columns
- 4. Select your Row labels
- 5. Select as Display: Expected count
- 6. Click Compute!

Example: We have a random sample of 500 U.S. adults who are questioned regarding their political affiliation and opinion on a tax reform bill. Their answers are summarized in the table below. Test if the political affiliation and their opinion on a tax reform bill are dependent at a 1% level of significance.

The null and alternative hypotheses:

H ₀ : Political affiliation and opinion on tax reform bill are	Affiliation	favor	indifferent	opposed	total
independent	democrat	138	83	64	285
H_A : Political affiliation and opinion on tax reform bill	republican	64	67	84	215
are dependent	total	202	150	148	500

Enter the contingency table in StatCrunch: Have your columns labeled as Affiliation, Favor, Indifferent, Opposed and then enter the corresponding cell value (see picture below).

Row	Affiliation	Favor	Indifferent	Opposed
1	Democrat	138	83	64
2	Republican	64	67	84
3				
14				

Complete Step 2 and the Contingency table box will pop up. Complete step 3 through 5 and click Compute.

Affiliation Column label:optional	Select column(s):	
Indifferent Opposed Row labels: Affiliation * Column label: optional Group by: optional Tisplay: Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa	Affiliation	
Opposed Row labels: Affiliation Affiliation Column label: optional Group by: optional Toisplay: Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient	Favor	
Agrillation ▼ Affiliation ▼ Column label: optional optional ▼ Display: ▼ Row percent Column percent Percent of total ■ Expected count ■ Contributions to Chi-Square ■ Hypothesis tests: ■ Chi-Square test for independence [2x2 only] McNemar's test for marginal homogeniety (2x2 only) ■ Cramer's V test for association ■ Mantel-Haenszel (group by with 2x2 only) ■ Confidence intervals: ■ Lambda Uncertainty coefficient Kappa ■	Indifferent	
Affiliation Affiliation Column label: optional Group by: optional Display: Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa	Opposed	
Column label: optional Group by: optional T Display: Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) McNemar's test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa	Row labels:	
optional Group by: optional Display: Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa	Affiliation	•
Group by: optional Display: Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) McNemar's test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa	Column label:	
Group by: optional Display: Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) McNemar's test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa	optional	
optional Display: Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa		
Display: Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa	Group by:	
Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa	optional	*
Row percent Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa	Display:	
Column percent Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa		
Percent of total Expected count Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa		
Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa		
Contributions to Chi-Square Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa	Expected count	
Hypothesis tests: Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa		quare
Chi-Square test for independence Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa		
Fisher's exact test for independence (2x2 only) McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa		
McNemar's test for marginal homogeniety (2x2 only) Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa		
Cramer's V test for association Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa		
Mantel-Haenszel (group by with 2x2 only) Confidence intervals: Lambda Uncertainty coefficient Kappa		
Confidence intervals: Lambda Uncertainty coefficient Kappa		
Lambda Uncertainty coefficient Kappa	Mantel-Haenszel (grou	p by with 2x2 only)
Lambda Uncertainty coefficient Kappa	Confidence intervals	
Карра		
Карра		
	Uncertainty coefficient	

StatCrunch output:

Rows: Affilia Columns: No							
Cell form	nat						
Count (Expected o	oun	t)					
	Fa	vor	Indiff	erent	Орр	osed	Tota
Democrat	138 (115.14)		(1	83 85.5)	(84	64 4.36)	285
Republican	64 (86.86)		(67 54.5)		84 3.64)	215
Total		202		150		148	500
Chi-Square	tes	t:					
Statistic	DF		lue	P-va	lue		
Chi-square	2	22.1	52469	<0.0	001		

The test statistic $\chi 2= 22.152$ and p-value <0.0001

Since p-value is less than level of significance 0.01, we reject the null hypothesis. We conclude that political affiliation and opinion on the tax reform are dependent.

24. One Way ANOVA

- 1. Enter the table in StatCrunch. Have your columns labeled accordingly.
- 2. Select Stat> ANOVA > One Way
- 3. Select your columns
- 4. Click Compute!

Example: The grade point averages of students participating in sports at a local college are to be compared. The data are listed in the table on the right.

Test, at the level of significance 0.05, the hypothesis that there is a difference in the mean grade point averages of the three groups. Assume that the requirement for one-way ANOVA is satisfied.

The null and alternative hypotheses:

 $H_{0:} \mu_{H} = \mu_{T} = \mu_{B}$ $H_{A:} At least one mean is different.$

Enter the table in StatCrunch like in the picture below.

StatCru	Inch App	lets Edit	Data S
Row	Hockey	Track	Basketball
1	3.2	1.8	2.5
2	2.6	2.1	3
3	2.5	1.9	2.8
4	3.5	3.3	2.7
5	3.1		2.5
6	2.1		

Complete Step 2 and the One Way ANOVA box will pop up. Select your columns and click Compute.

Vay ANOVA		
Compare:		
Selected columns:		
Hockey	Hockey	
Track Basketball	Track Basketball	
DasketDall	DasketDall	
Values in a single column:		
Values in a single column: Responses in:		
Select column	w.	
Factors in:		
Select column	v	
Select column	*	
Vhere:		
-optional		Build
)ptions: DCompute Tukey HSD		
Level: 0.95		
Test homogeneity of variance		
Levene's test 🔹		
Propher		
	? Cancel	Comp

Hockey	Track	Basketball
3.2	1.8	2.5
2.6	2.1	3.0
2.5	1.9	2.8
3.5	3.3	2.7
3.1		2.5
2.1		

StatCrunch output:

Options					2
		ariance resu separate colu			
Column s	tati	stics			
Column ¢	⊧ n ∈	🛊 Mean 🛊	Std. Dev. \$	Std. Error	¢
Hockey	(5 2.8333333	0.52025635	0.2123937	6
Track	4	4 2.275	0.6946222	0.347311	1
Basketbal	1	5 2.7	0.21213203	0.0948683	3
ANOVA ta	abla				
Source		SS	MS	F-Stat	P-value
Columns	2	0.77516667	0.38758333	1.5603019	0.2498
Error	12	2.9808333	0.24840278		
Total	14	3.756			

The test statistic F-stat = 1.56 and p-value = 0.2498

Do not reject H_0 because p-value is not less than the significant level of 0.05. Thus, the sample data does not suggest that there is a difference in the mean grade point averages of the three groups.