

Geometry Teacher:

The Beginners Guide To Honors Mbgebra II/Trig

A Note To Our Students: WELCOMEI This packet is designed to heby you make the treasition into this challerging course as smooth as possiblel The entire content of this sugigested practice set will be covered in the first two weeks of school.

Our suggestion: Eirgt look through the whole preket and read ald the directions. Begin with the problems that you recoginize and are confidert with-you wild notice that mapy problems are Alogebra 1 material-or easier!

For the concepts you gre unfamilere with: Trp into your resourcefulbess and see what you can fird! Perhaps try at Alogebra book, a math website, a classmate, relative, or apyone you know!

One thing is for sure: The more you do now, the essier it wilb be wher school starts, and the more comfortable you wild feel with the pace of the class.

Instructions: Ceeb free to use a calculator to check a solution or two, but HLo problems ree designed to be done without one. NEATLYy show ald of your Work for each problem. You MטST try every problem!
Keep everything together with this cover sheet on top abd BRINQG TO IHE EIRET DAY OE CLASE!
Give us your best work! ...whilde giving yourself the opportunity to giet off to a great start! WE LOOK, EORWARD IO MEETILNG YOO IN $\mathcal{A} O G O S T!!$ ~The Honors Aloge/ Irig Ieacherg

1Preliminary Information

Contrary to former views of mathematics, numbers were invented by people, rather than simply being discovered. In this book you will see how things invented mainly to form a complete mathematical system can be used to describe things that happen in the real world. First, however, you must be sure that you and your instructor are speaking the same language! The first chapter is designed with this purpose in mind.

Transcendental Numbers
(e.g., π)

Cannot be expressed as roots of integers.

Natural Numbers

(e.g., 2, 2001)

Positive integers or counting numbers

Digits

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
Numbers from which the numerals are made.

Odd Numbers

(e.g., $-49,15,2001,1$) Integers not divisible by 2 .

Honors Algebra II/Trig Beginner's Guide

1. Give an example of:
a) An irrational number greater than one but less than two.
b) A non-integer
c) An imaginary number
d) A negative odd number
e) A transcendental number
f) A digit that is not a counting number
g) A natural number that is negative
h) A real number that is also irrational
b. \qquad
c. \qquad
d. \qquad
e. \qquad
a. \qquad
.
\qquad
g. \qquad
h. \qquad
2. Name all sets of numbers to which each of the following belongs:
a) -12
a. \qquad
b) $\sqrt{21}$
b. \qquad
c) 4
c. \qquad
d) $\sqrt{-5}$
d. \qquad
3. Identify each polynomial by degree and term. If it is not a polynomial, explain why it is not one.
a) $3 x^{2}-4 x$
a. \qquad
b) $4-|3 x|$
b. \qquad
c) $x^{2} y+2 x y-3 y^{2}$
c. \qquad
d) $23 a b c$
d. \qquad
4. Carry out the indicated operations:
a) $15+3-21$
a. \qquad
b) $52 \div 4 \bullet 11$
c) $35-15 \div 5+21$
d) $(3-2 x)(4+x)$
b. \qquad
c. \qquad
d. \qquad
5. Evaluate the following for $x=-3$ and $x=5$
a) $|3-2 x|$
a. \qquad
b) $5 x+7$
b. \qquad
c) $2 x^{2}-3 x-9$
c. \qquad
6. Solve in the indicated set:
a) $6-3 x=-31$; $\{$ reals $\}$
b) $4 x-21=18 ;$ \{integers $\}$
c) $(3 x+5)(2 x-8)=0$; \{rational reals $\}$
d) $|3-2 x|=13$; \{negative reals\}
a. \qquad
b. \qquad
c. \qquad
d. \qquad
7. Solve, write the solution set, and graph on the number line in the given domain:
a) $5 x-7 \geq 13$; \{reals $\}$
a. \qquad
b) 4-3x <22; \{integers\}
b. \qquad
c) $3 \leq 2 x-5<8$; \{reals $\}$
c. \qquad
d) $|x+7| \geq 3$; \{reals $\}$
d. \qquad

For questions 8-17, plot the graph of the function in the indicated domain. Identify the range.
8. $y=3 x-5$; \{reals $\}$
9. $y=\frac{1}{2} x+4 ;\{$ reals $\}$

10. $y=2 x^{2}$; \{non-positive reals $\}$

11. $y=-0.2 x^{2}$: \{reals\}

12. $y=\frac{-2}{x}$; \{positive reals\}

13. $y=\frac{3}{x} ;\{.5 \leq x \leq 4\}$

Analyze the graph to identify the domain and range.
18.

Domain: \qquad Range: \qquad
20.

Domain: \qquad Range: \qquad
19.

Domain: \qquad Range: \qquad
21.

Domain: \qquad Range: \qquad

Using the domain and range given, sketch a graph that supports the data.
22. Domain: $\{-2 \leq x \leq 5\}$; Range: $\{1 \leq y \leq 7\}$

23. Domain: $\{4 \leq x \leq 8\}$; Range: $\{-1 \leq y \leq 6\}$

24. Domain: $\{1<x<3\}$; Range: $\{2<y<4\}$
25. Domain: $\{-2<x \leq 6\}$; Range: $\{-3 \leq y<8\}$

Plot the graph of the given equation in the indicated domain. Identify the functions and define their range.
26. $2 \mathrm{x}-3 \mathrm{y}=-12$; $\quad\{-3 \leq x \leq 6\}$

27. $x^{2}+y=3$;
\{reals\}

Function: \qquad

Range: \qquad

Function: \qquad

Range: \qquad
28. $x+y^{2}=3$; $\quad\{$ values of x for which there are real values of y \}

Function: \qquad
Range: \qquad
29. $y=|x|-2: \quad\{-3<\mathrm{x} \leq 5\}$

Function: \qquad

Range: \qquad
30. $|y|=4-2 x$: $\quad\{$ values of x for which there are real values of y \}

Function: \qquad
Range: \qquad
31. $y=-\frac{4}{x} ; \quad$ \{negative numbers $\}$

Function: \qquad

Range: \qquad

Tell whether or not the relation graphed is a function.
32.

33.

34.

35.

36.

37.

Sketch a reasonable graph showing how the dependent variable is related to the independent variable.
38. Your vertical position on a carousel horse depends on the time since the carousel began.

39. The amount of fuel in your boat's outboard motor is related to the amount of time you have been pulling skiers.

40. The temperature of your home in the summer is related to the amount of money spent on air conditioning.

41. The speed of a ceiling fan blade and the amount of air moved by it are related.

For questions 42-44, given $y=-2 x+5$:
42. Evaluate when:
a) $x=-3$
b) $x=1$
c) $x=5$
43. Plot these points on a graph grid.

44. Using the slope formula, show that these points lie on a straight line.

For questions 45-54, quickly plot the following equations on a graph grid.
45. $y=\frac{3}{4} x-2$

46. $y=-\frac{2}{3} x+5$

47. $2 x-3 y=-6$

48. $3 x-4 y=32$

49. $x=8$

50. $y=-4$

51. $y=5$

52. $x=-6$

53. $y=x$

54. $y=-x+4$

55. For the equation $y+2=-\frac{3}{2}(x-6)$
a) Name the form of the equation.
b) Identify the point found in the equation.
c) Identify the slope.
d) Plot the graph from this information.
e) Transform to slope-intercept form.
f) Transform to $A x+B y=C$ form.

Find the equation of the line described in slope-intercept form.
56. Through ($3,-6$) and $(6,2)$
57. Through $(-6,3)$ and parallel to $3 x-9 y=14$
58. Through ($-3,8$) and perpendicular to $y=\frac{1}{4} x+5$
a.
b. \qquad
c.
d.

e. \qquad
f. \qquad
56. \qquad
57. \qquad
58. \qquad
59. Has an x-intercept of 3 and y-intercept of -5 .
60. Vertical through $(-2,3)$
61. Horizontal through $(-11,4)$
62. Through $(2,-1)$ with an x-intercept of 5
59. \qquad
60. \qquad
61. \qquad
62. \qquad
63. Ice Cream Problem C. Hicks owns a local ice cream parlor and yogurt stand. His single scoop cone sells for 89 cents and the "giant earthquake" of eight scoops sells for $\$ 6.07$. The cost of the ice cream cone varies linearly with the number of scoops.
a) Define the variables, write the ordered pairs, find the slope, and write the particular equation expressing cost in terms of the number of scoops.
b) What is the price of a cone with 4 scoops, and 12 scoops?
c) A two gallon container sells for $\$ 22.35$. How many scoops does it contain?
d) What is the cost intercept? What is its real-world meaning?
e) What is the cost per scoop? What part of the equation tells you this?

