<u>Investigating the Turning Points of the Graphs of Polynomial Functions</u>

Recall: A turning point is a point where the graph changes from increasing to decreasing or decreasing to increasing. *Turning points result in local minimum or local maximum values.*

Maximum and Minimum Values	
Global	Local
The function never takes on a value that is greater than the maximum or less than the minimum	A maximum or minimum within some interval around the turning point that does not need to be (but may be) a global maximum or global minimum

Example) Given the graph, determine the number of turning points, the number of global maximum and/or minimum values, and the number of local maximum and/or minimum values that are not global.

For each graph, tell the number of turning points and the number of Global max/min and/or local max/min values that are not global.

A.

B.

C.

Turning Points: _____

Global Max:

Local Max:

Global Min: _____

Local Min: _____

Turning Points: _____

Global Max: _____

Local Max:

Global Min: _____

Local Min: _____

Turning Points: _____

Global Max: _____

Local Max: _____

Global Min:

Local Min: _____