Practice 9-2

Example Exercises

Example 1

1. Complete the following paragraph proof of Theorem 9-5: If the diagonals of a quadrilateral bisect each other, than the quadrilateral is a parallelogram.

Given: \overline{FH} and \overline{GI} bisect each other.

Prove: FGHI is a parallelogram.

 $\overline{FJ}\cong \overline{JH}$ and $\overline{GJ}\cong \overline{JI}$ by ________ and $\angle FJG\cong$ ______. Since vertical angles are congruent, $\angle FJI\cong$ ______ and $\angle FJG\cong$ ______. Therefore $\triangle FJI\cong \triangle HJG$ and $\triangle FJG\cong \triangle HJI$ by the _______ postulate, and $\angle FIJ\cong \angle HGJ$ and $\angle FGJ\cong \angle HIJ$ by _______. Since $\angle FIJ$ and $\angle HGJ$ are both alternate interior angles and congruent, \overline{FI} ______ \overline{GH} . $\angle FGJ$ and $\angle HIJ$ are also alternate interior angles and congruent, so \overline{FG} ______ \overline{IH} . Therefore FGHI is a parallelogram by

Example 2

Based on the markings, decide if each figure is a parallelogram. Justify your answer.

2.

3

4.

5.

6

7.

8

0

State whether the information given about quadrilateral RAND is sufficient to determine that it is a parallelogram.

10.
$$\angle RDC \cong \angle NAC, \angle ARC \cong \angle DNC$$

11.
$$\overline{RD} \cong \overline{AN}, \overline{RN} \cong \overline{RA}$$

12.
$$\angle ACN \cong \angle RCD$$
, $\angle RCA \cong \angle DCN$

13.
$$\overline{RD} \cong \overline{AN}, \overline{RA} \cong \overline{DN}$$

